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[1] We study a model for channels of magma flow within mantle undergoing
decompression melting. Cylindrical conduits in a viscous, porous, compacting matrix are
considered, and it is found that the dynamics of the conduit walls are governed by the
competition between melting (caused by decompression) and viscous closure (caused
by the reduced pressure in the conduit). There are many similarities with the Röthlisberger
channels which transport melt water beneath glaciers. Pressure in these mantle conduits is
very nearly magmastatic, and ascent velocities on the order of 100 m a�1 are predicted.
Flow from the surrounding porous partially molten matrix into the low-pressure channel
is considered and can supply a continual source of melt. The accumulation region is on
the order of the compaction length, and the residual matrix is reduced to very low melt
fractions, typically <0.5%. Channels form naturally from porous flow in the matrix
because of the enhanced melting rate in regions of higher porosity, which have a larger
heat flux from below. The vast majority of melt could be expected to flow eventually
into one of these channels, which therefore offer a physical grounding for the conceptual
near-fractional melting models used to explain field observations.
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1. Introduction

[2] Magma production beneath mid-ocean ridges and in
mantle hotspots occurs because of the decompression melt-
ing of the upwelling mantle rock. The rock is believed to
melt along grain boundaries which results in a partially
molten solid matrix with melt-filled pores. The positively
buoyant melt can then rise slowly through the matrix while
the matrix deforms, or compacts, to accommodate this.
There are, however, several geochemical and geophysical
reasons to suggest that this type of porous flow is not the
main extraction mechanism for melt from these melting
regions, and that instead the melt can segregate from the
matrix and rise in localized high-porosity channels [Kelemen
et al., 1997]. This paper aims to study the dynamics of open-
melt conduits in a viscous compacting porous matrix under-
going decompression melting.
[3] Whether such open melt channels exist in the mantle

is not known, and one of the purposes of this study is to
examine, at least from a fluid mechanical point of view,
whether they are viable. Mechanisms which could produce
open conduits include ‘‘fracturing’’ of the partially molten
matrix [Nicolas, 1986], and mechanical or reactive insta-
bilities to the flow [Stevenson, 1989; Aharonov et al., 1995;
Spiegelman et al., 2001].
[4] The evidence for focussed, chemically isolated flow

of magma from within the mantle is well documented

[Kelemen et al., 1997; Iwamori, 1993; Asimow and Stolper,
1999]; erupted MORB (the solidified melt) is not in
chemical equilibrium with the residual mantle peridotite,
and is inferred to have been transported from deep within
the partially molten region in various degrees of chemical
isolation from the residual matrix. This is inconsistent with
porous flow and has led to many conceptual ‘‘two porosity’’
models of melt extraction termed ‘‘fractional’’ or ‘‘near-
fractional’’ melting, the idea being that melt is produced in
the pores in equilibrium with the surrounding matrix, but is
then instantaneously or nearly instantaneously extracted to
higher levels so that its chemical signature is preserved
[Asimow and Stolper, 1999; McKenzie, 1985; Iwamori,
1993]. High-porosity or open melt channels potentially
provide a mechanism for doing this.
[5] The emphasis in this paper is on the underlying

driving mechanism for melting and how this plays a role
in determining the type of melt flow. We are considering
areas of upwelling mantle where the temperature of the
ascending rock intersects the pressure-dependent solidus; it
is then constrained to the solidus and the excess heat
contained in the ascending rock is what drives melting. From
this standpoint, it is really the rate of upwelling of heat
from the hotter mantle below which determines how much
melting occurs, and the crucial point we want to emphasize
is that this heat is carried by both the ascending matrix and
the ascending melt. In an open channel, or even in high-
porosity regions in the partial melt, themelt provides themain
heat transport and this has a significant impact on the
governing dynamics. Indeed it can lead to a ‘‘runaway’’
effect which essentially erodes an open channel in a previ-
ously low porosity matrix. The governing equations are very
similar to those for the well-known reaction-infiltration
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instability, but involve only a single component rock whose
melting rate is determined by a consistent conservation of
energy.
[6] For the sake of simplicity, and in an attempt to keep

these ideas clear, we will ignore all compositional effects
and treat the mantle as a single component rock. The solidus
in this case will be a function of pressure only; later we
consider the concentration of incompatible trace elements,
but we do not take account of compositional effects on the
solidus. Whilst a vast simplification of the real mantle, we
believe that the insights that can be gained from this
approach are helpful.
[7] Studies of magma conduits in the mantle have been

made in the past; experiments have been conducted by
injecting light viscous fluids into more viscous ones and
comparing the laboratory observations with theory [Helfrich
and Whitehead, 1990; Olson and Christensen, 1986]. Much
of the interest has been with solitary waves that travel up
such conduits and for which the experiments and theory are
in good agreement. Richardson et al. [1996] considered
conduit flow within a viscous porous medium, and studied
the flow into and out of a conduit during the passage of a
solitary wave.
[8] Little attention has been paid to how melt gets into a

putative conduit from the surrounding region of partial melt.
It is evidently crucial that this type of inflow is possible,
since supplying a lumped flux at the conduit base seems

unrealistic. Sleep [1988] considered how melt flow in a
compacting partially molten matrix might be sucked into
small low-pressure veins and dikes and found that this could
be done over distances comparable to the compaction length,
which is the length scale over which pressure variations are
felt in the surrounding partial melt. In section 3 we similarly
consider the flow into a channel, but we first examine how the
channels themselves might operate once formed.
[9] Section 2 studies the dynamics of a conduit of magma

surrounded by a more viscous matrix. The important addi-
tion to previous models is to take account of the additional
melting which occurs as the melt ascends within the
conduit. We find that this added melting has a controlling
effect on how a channel ultimately evolves, and the situa-
tion is very similar to that which is well known for channels
of melt water in the basal regions of glaciers [Röthlisberger,
1972; Nye, 1976]: the size of the channel is governed by a
balance between the walls melting and deforming by
viscous closure. In the glacier case the melting is driven
by viscous dissipation of the turbulent water flow, whereas
here it is driven by laminar advection down the solidus
gradient. Both these scenarios have the effect of providing a
melting rate proportional to the flow rate.
[10] After considering the feeding supply of melt from

the partially molten matrix in section 3, section 4 looks at
how a channel might naturally evolve out of an instability
to the porous flow, while in section 5 we discuss some
implications of these results.

2. Channel Dynamics

[11] We consider a vertical conduit filled with viscous
fluid (that is, melt) of density rl and pressure pc contained in
a more viscous fluid (the ‘‘solid’’ matrix) of density rs and
pressure ps. The conduit is assumed to be cylindrical, with
cross-sectional area S(z, t), and vertical volume flux Q(z, t).
Geophysically, we envisage the channel embedded within a
partially molten region of the decompressing mantle, as
shown in Figure 1. The cylindrical shape is chosen since a
channel forming through dissolution or melting instabilities
might be expected to be symmetric, or if it forms through
fracturing of the matrix, the initially planar shape can be
expected to localize into a series of cylinders as a result of
nonuniform melting of the walls [cf. Bruce and Huppert,
1990]. The pressure in the matrix is lithostatic ps = p0� rsgz,
and we write the pressure reduction in the melt as the
effective pressure Nc � ps � pc. The Reynolds number is
small, so the flow is laminar, governed by the Poiseuille law

Q ¼ S2

8phl
Drg þ @Nc

@z

� �
; ð1Þ

where hl is the melt viscosity, Dr = rs � rl is the density
difference and g is the gravitational acceleration. The
continuity equation for the melt is

@S

@t
þ @Q

@z
¼ M

rl
þ W; ð2Þ

in whichM (kg m�1 s�1) is the rate of melting of the channel
walls, and the source term W is included to account for the

Figure 1. Geometry considered in sections 2 and 3. Mantle
rock is ascending with velocity W0 and begins to partially
melt at z = 0. The top of the partially molten region (the base
of the lithosphere) is at z = l; the effective pressure is
prescribed to be zero there. The melt rising up the channel
may either pond and subsequently freeze on to the base of
the lithosphere, or continue to ascend through dykes. The
channel shown extends the full depth of the partial melt, as is
assumed in section 2; its width is greatly exaggerated. Melt
is drawn from the surrounding porous partial melt as shown
by the dotted arrows and results in a source W to the channel.
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inflow of melt through the (small) pores in the walls; this is
taken as arbitrary in this section, but will be calculated from
the surrounding porous flow in section 3.
[12] The melt pressure is related to the movement of the

channel walls, since an inclusion at reduced pressure Nc in a
fluid of viscosity hs will close down at a rate [Nye, 1953;
Sleep, 1988]

@S

@t
¼ � SNc

hs
� � S ps � pcð Þ

hs
: ð3Þ

However, the melting of the walls causes S to grow, so the
kinematic condition for the conduit walls is really

@S

@t
¼ M

rs
� SNc

hs
: ð4Þ

This evolution equation allows for a steady state in which
the rate of viscous closure caused by the pressure difference
matches the melting rate. It is left to determine this melting
rate, and it must come from energy considerations.
[13] The conduit walls are assumed to be at the melting

temperature (solidus) Ts, which is pressure, and therefore
depth, dependent. This is because heat conduction on the
scale of the pores is fast enough to constrain the matrix
to thermodynamic equilibrium. If we assume a linear
Clapeyron slope G, we have

Ts ¼ T0 � G rsgzþ Ncð Þ; ð5Þ

where the term in brackets is p0 � pc; pc being the interfacial
pressure, and T0 and p0 being a reference temperature and
pressure. We allow for the fact that the temperature in the
conduit may be different from the wall temperature by
writing the average temperature there as T = Ts + q. q is thus
the average temperature excess in the ascending melt (the
actual temperature will be hotter in the center and equal to the
wall temperature at the edges). Energy conservation is
expressed as

MLþ rlcS
@

@t
Ts þ qð Þ þ rlcQ

@

@z
Ts þ qð Þ ¼ Q Drg þ @N

@z

� �
;

ð6Þ

in which the first term is the energy lost to melting the walls,
the rest of the left hand side is heat advection, and the term on

the right hand side is heating by viscous dissipation. L is the
latent heat of melting and c is the specific heat capacity. The
melting rate is related to the temperature excess by an energy
transfer equation

ML ¼ akq; ð7Þ

for conductive heat transfer enhanced by advection in a
cylindrical pipe. a is a constant and k is the thermal
conductivity of the melt. Note that heat conduction is
important for the energy transfer into the walls, but does not
appear (except implicitly through M) in equation (6) which
has been averaged over the channel cross section. Vertical
heat conduction is negligible.
[14] Equations (1), (2), (4), (5), (6) and (7) provide a

closed system for the flux, cross section, effective pressure,
temperature and melting rate. If melting is ignored (so
temperature must also be ignored) and W = 0, equation (3)
gives the effective pressure, which can be substituted into
equations (1) and (2) to give

Q ¼ S2

8phl
Drg þ hs

@

@z

1

S

@Q

@z

� �� �
: ð8Þ

This, in combination with the continuity equation (2), gives
equations which have often been used to describe solitary
waves on fluid conduits [Olson and Christensen, 1986;
Helfrich and Whitehead, 1990]. In the small perturbation
limit it reduces to the Korteweg de-Vries equation with
soliton solutions [Whitehead and Helfrich, 1986].
[15] On the face of it, one might think that the melt rises

buoyantly and that for a typical area S0 the flux is therefore
of magnitude, from equation (1),

S20Drg
8phl

: ð9Þ

For a cross-sectional area 1 m2, and using the typical values
in Table 1, this gives melt velocities of around 200 m s�1.
This is much too large to account for the rate of crustal
accretion at mid ocean ridges and led Kelemen et al. [1997],
for instance, to conclude that open channels of this sort must
be transient, if they exist at all. However, the dynamics of
these channels can be quite different if the pressure in them
is closer to equilibrium; magmastatic equilibrium occurs if
the pressure increases with depth because of the weight of
the overlying magma or, in terms of the effective pressure,

@Nc

@z
¼ �Drg: ð10Þ

For the steady state considered here, the dominant balance
in equation (1) turns out to be between these terms on the
right hand side, so that the flow is driven not by the full
buoyancy force Drg but only a small fraction of it. The size
of the channel is determined by the balance between melting
and viscous closure in equation (4). The melting rate is
determined from the energy equation (6) and is essentially
given by the rate at which melt is advected down the solidus
gradient, the heat transfer to the walls being so efficient as

Table 1. Values of Model Constants

Parameter Value

g 10 m s�2

rs 3 � 103 kg m�3

rl 2.5 � 103 kg m�3

c 103 J kg�1 K�1

k 2.5 J m�1 s�1 K�1

L 3 � 105 J kg�1

G 10�7 K Pa�1

a 20
k0 4 � 10�9 m2

hl 1 Pa s
hs 3 � 1018 Pa s
l 50 km
W0 10�9 m s�1
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to prevent the melt in the conduit from rising significantly
above the wall temperature.
[16] These important balances motivate scaling the vari-

ables according to

Ts � T0 � Grsgz; Nc � Drgz; ML � rlcGrsgQ;
M

rs
� SNc

hs
; ML � akq: ð11Þ

This gives rise to scales, denoted by a subscript 0,

Ts0 ¼ Grsgl; Nc0 ¼ Drgl; M0 ¼ rl
cGrsg
L

Q0;

S0 ¼
rl
rs

hs
Drgl

cGrsg
L

Q0; q0 ¼
rl
ak

cGrsgQ0; ð12Þ

in terms of a typical length scale l and melt flux Q0, which
can either be prescribed at the lower end of the conduit, or
determined from the rate of inflow W0 by Q0 = W0l.
[17] Scaling all the variables as in equation (12), and

the time according to tc0 = hs/Nc0, results in the nondi-
mensional equations

@S

@t
¼ M � SNc; ð13Þ

1

rSt

@S

@t
þ @Q

@z
¼ 1

St
M þ W; ð14Þ

LQ ¼ S2 1þ @Nc

@z

� �
; ð15Þ

M þ 1

rSt
S
@

@t
Ts þ mqð Þ þ Q

@

@z
Ts þ mqð Þ ¼ nQ 1þ @Nc

@z

� �
;

ð16Þ

Ts ¼ �z� r � 1

r
Nc; ð17Þ

q ¼ M ; ð18Þ

in which the dimensionless parameters are

r ¼ rs
rl
; St ¼ L

cGrsgl
; m ¼ q0

Grsgl
;

n ¼ Dr
rsrlcG

; L ¼ 8phl
Drg

Q0

S20
: ð19Þ

r is the density ratio, St is a Stefan number, which is the
ratio of latent heat to sensible heat (in this case given by the
change in the solidus temperature up the conduit Grsgl), and
m is the ratio of excess channel temperature to this range of
the solidus. n measures the importance of viscous dissipa-
tion and L measures the deviation of the melt pressure from
magmastatic caused by the fluid flow.

[18] We suppose for the moment that the channel flux is
of order Q0 = 0.01 m3 s�1, and that the conduit occupies the
full depth of the partial melt with length l = 50 km. With the
other parameters as in Table 1, this gives

Nc0 	 2:5� 108 Pa M0 	 2:5� 10�4 kg m�1 s�1

S0 	 1000 m2; Ts0 	 150 K; q0 	 1:5 K;

tc0 	 1:2� 1010 s 	 400 a: ð20Þ

The dimensionless parameters are then

r 	 1:2; St 	 2; m 	 0:01; n 	 0:7; L 	 5� 10�11:

ð21Þ

[19] The fact that L is so small means that the melt
pressure in the conduit is very close to magmastatic.
L depends on the flux as 1/Q0, so a much lower flux would
be needed in order to make it order 1. The fact that m is small
means that the temperature difference between the melt in
the conduit and the walls is small. Thus as the wall temper-
ature decreases up the conduit because of decompression, the
melt temperature follows it, and the resulting energy flux into
the walls is what causes them to melt. The situation is
remarkably similar to that for channels of melt water in
viscously deforming ice [Nye, 1976]. Neglecting these
small terms of order m and L causes q to decouple and the
channel equations (13)–(18) reduce to

@S

@t
¼ M � SNc; ð22Þ

1

rSt

@S

@t
þ @Q

@z
¼ 1

St
M þ W; ð23Þ

0 ¼ 1þ @Nc

@z
; ð24Þ

M � Q

r
¼ 0 ð25Þ

These state that the channel opens and closes because of
melting and viscous deformation, the melt flux increases
because of melting of the walls and additional inflow
through them, the melt pressure varies magmastatically, and
the rate that the walls melt is given by the rate hot fluid is
advected from below.
[20] Boundary conditions are required for the melt flux Q

and the effective pressure Nc. For a channel extracting melt
from partially molten rock we can expect the channel to
grow by drawing in melt from the surroundings, so W is
positive and we can prescribe Q = 0 at the bottom. If we
envisage the channel extending through the full depth of the
partial melt zone (0 < z < 1 in the nondimensional variables)
this is at z = 0, and we can expect to prescribe a condition on
the pressure at the top z = 1.
[21] It is not entirely clear what the appropriate condition

here is, since what happens to melt at the top of the partially
molten region is little understood. If a sufficient supply
of melt comes up the conduit it could continue, perhaps
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as a hydraulically driven fracture, up into the lithosphere
to erupt on the ocean floor. Alternatively it might feed a
sublithospheric magma chamber, or it might simply solidify.
In the context of porous flow, Hewitt and Fowler [2008]
suggested that the effective pressure should go to zero at the
top of the partial melt, and we choose to satisfy the same
condition here. If the conduit reached the open air, as is the
case for subglacial melt channels reaching the snout of a
glacier, this would certainly seem to be correct.
[22] Taking boundary conditions

Q ¼ 0 at z ¼ 0; Nc ¼ 0 at z ¼ 1; ð26Þ

gives the steady state solutions

Q ¼
Z z

0

W �zð Þ exp z� �z

rSt

� �
d�z; ð27Þ

M ¼ Q

r
; ð28Þ

Nc ¼ 1� z; ð29Þ

S ¼ 1

r 1� zð Þ

Z z

0

W �zð Þ exp z� �z

rSt

� �
d�z; ð30Þ

which are shown in Figure 2. This suggests that the area of
the channel grows without bound at the top z = 1 because
there is no pressure difference to counteract melting with
closure. This issue can be avoided if we allow the host
matrix also to have some small vertical velocity, so that it, as
well as the melt, is ascending. For a channel within the
partially molten region beneath mid ocean ridges or in
hotspots, this is indeed what is happening; the fact that the

solid rock itself is ascending is the reason for decompression
partial melting. The derivative in equation (13) is therefore
really a material derivative, which we write (for consistency
later) as

@S

@t
þ ed2cW

@S

@z
¼ M � SNc; ð31Þ

where edc
2W is the small vertical matrix velocity. Thus as S

grows near z = 1, this extra advective term becomes
important; the correction to the solution there can be found
by rescaling

z ¼ 1� e1=2dcW 1=2ẑ;

S ¼ Q 1ð Þ
re1=2dcW 1=2

Ŝ; Nc ¼ e1=2dcW 1=2N̂c;

Q ¼ Q 1ð ÞQ̂; M ¼ Q 1ð Þ
r

M̂ : ð32Þ

Then the leading order steady state equations (13)–(18)
become

� @Ŝ

@ẑ
¼ M̂ � ŜN̂c; ð33Þ

Q̂ ¼ M̂ ¼ 1; ð34Þ

N̂c ¼ ẑ; ð35Þ

so Ŝ is given by

Ŝ ¼
Z 1

ẑ

e ẑ2�ẑ2ð Þ=2 dẑ ¼
ffiffiffi
p
2

r
eẑ

2=2erfc ẑ=
ffiffiffi
2

p� �
: ð36Þ

Figure 2. Steady state solutions to equations (13)–(18) and (26), for a constant influx W = 1. The
parameter values are r = 1.2, St = 2, L = 5 � 10�11, m = 0.01, n = 0.7. Dashed lines are the approximate
solutions given by equations (27)–(30) and (36). The axes show the scaled variables, with the typical
scales given in equation (20).
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This boundary layer solution is shown in Figure 2, and
implies that the cross-sectional area at z = 1 tends to the finite
dimensionless value S =

ffiffiffiffiffiffiffiffi
p=2

p
Q(1)/re1/2dcW

1/2.
[23] If a channel can be supplied with a constant supply

of melt from the surrounding porous melt, it can be
expected to behave as in Figure 2; the flux is determined
by the inflow as well as the additional production of melt
caused by melting the walls; the pressure in the melt is
nearly magmastatic; the temperature of the ascending melt
closely follows the decreasing temperature of the walls by
transferring its excess energy into melting; and the area of
the channel adjusts so as to cause the rate of viscous closure
to balance the melting rate in equation (13).
[24] It is worth pointing out that the nearly magmastatic

conditions in the channel are a consequence of the dynam-
ics, rather than an assumption. If the effective pressure were
initially smaller, the melt would ascend much faster and
consequently melt the walls faster, causing the channel to
expand (equation (13)), and the effective pressure would
evolve toward being magmastatic. The fact that the melt is
so close to equilibrium means the channel area can be much
larger than it would be under the full buoyancy force Drg.
Thus there is a typical radius of �15 m (from (20)) even for
a melt flux of only 0.01 m3 s�1.
[25] Finally, although the solution shown in Figure 2 is

for a steady state channel extending the full depth of the
partial melt, essentially the same behavior might be
expected for a shorter channel. Non steady states are of
course also possible, and in section 4 we see how a channel
might ‘‘grow’’ downward into the partial melt.

3. Porous Flow Around a Channel

[26] The previous section describes the dynamics of a
channel in a viscous medium undergoing decompression
melting, but assuming that the channel is somehow fed by a
supply of melt through its walls. We now attempt to explain
this supply by examining the behaviour of the surrounding
partial melt. The viscous matrix is really a porous compact-
ing matrix, which is undergoing continual melting as it
ascends. We have already seen that the melt pressure in the
channel is nearly magmastatic, and thus significantly
reduced from the lithostatic pressure in the matrix; thus
if the far-field pore pressure in the melt is close to
lithostatic, as we expect, the channel acts as a reduced
pressure sink which can naturally be expected to draw in
melt. The continual production of melt in the pores
(caused by the background upwelling rate of the matrix)
means the porous medium is not sucked dry but can
provide a continued source of melt to the channel. To
understand how this works we must first set out the
principal dynamics governing the porous partial melt.
[27] Model equations have been set out numerous times

in the past [Ahern and Turcotte, 1979; McKenzie, 1984;
Ribe, 1985; Fowler, 1990a, 1990b; Spiegelman, 1993].
Until recently most analysis has tended to largely ignore
the actual melting process and focus on the matrix compac-
tion and how this affects the melt flow. Here, we take the
simplest set of equations which we think capture the
dominant physics, particularly the heat transfer from below
which drives decompression melting. This means including
the same physics as were included in the previous section

for melt channels; mass conservation, energy conservation
when the temperature is constrained thermodynamically to
the pressure-dependent solidus, and a flow law, which in
this context will be Darcy’s law. These are expressed by

@f
@t

þr  fu ¼ m

rl
; ð37Þ

� @f
@t

þr  1� fð ÞV ¼ � m

rs
; ð38Þ

mLþ rsc 1� fð Þ þ rlcfð Þ @Ts
@t

þ rsc 1� fð ÞVþ rlcfuð Þ  rTs ¼ 0;

ð39Þ

Ts ¼ T0 � G pl � p0ð Þ; ð40Þ

f u� Vð Þ ¼ k0f2

hl
�rlgk �rplð Þ; ð41Þ

Here f is the volume fraction of melt, V and u are
respectively the velocities of matrix and melt, and ps and pl
are the pressures in matrix and melt. m (kg m�3 s�1) is now
the local melting rate and k0 is a constant permeability
coefficient. The heat capacity c is assumed to be equal in the
two phases, and we ignore the effects of conduction and
viscous dissipation in equation (38). Note that the
temperature of melt and matrix is the same, and is
determined by the interfacial pressure pl according to the
Clapeyron slope.
[28] The analogue of the closure relationship (4) for the

porous region follows from applying the same law to
individual pores, and results in a compaction relationship
between the pressures

N � ps � pl ¼ � hs
f
r  V; ð42Þ

where hs/f is the bulk viscosity, which describes how easily
the combined matrix-melt structure can be deformed
[Batchelor, 1967; Sleep, 1988].
[29] The missing equation is the total momentum conser-

vation which we could write (ignoring inertia) as

0 ¼ �rps þr fNð Þ � rsgk þDrgfk þr  1� fð Þts; ð43Þ

where ts is the deviatoric stress in the matrix. However, we
will assume here that this reduces to saying that solid
pressure in the matrix is lithostatic,

ps ¼ p0 � rsgz: ð44Þ

Hewitt and Fowler [2008] nondimensionalized the equa-
tions and found that the viscous stresses caused only small
perturbations to this in an ascending column of partial melt.
The stresses which occur in a matrix undergoing corner
flow beneath a spreading ridge are known to set up pressure
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gradients which can drive some melt flow toward the ridge
[Spiegelman and McKenzie, 1987; Spiegelman, 1993], but
for the moment we ignore this effect and assume that the
solid pressure is simply given by equation (44), as in
section 2.
[30] The partial melt equations are scaled by assuming the

upwelling rate W0 is prescribed. With the length scale l, and
writing the velocity scales asW0 and w0, a sensible choice is

Ts0 ¼ Grsgl; m0 ¼ rs
cGrsg
L

W0; t0 ¼
l

W0

;

f0 ¼
hl

k0Drg
rs
rl

cGrsgl
L

W0

� �1=2

; N0 ¼
hs
l
w0;

w0 ¼
k0Drg
hl

f0 ¼
k0Drg
hl

rs
rl

cGrsgl
L

W0

� �1=2

; ð45Þ

Note that the effective pressure N is scaled differently to the
channel effective pressure Nc. As well as r and St given in
equation (19) we define the new dimensionless parameters

e ¼ W0

w0

; d2c ¼
N0

Nc0

: ð46Þ

Notice that f0 could also be considered a dimensionless
parameter, but it is related (by definition) to the others by
f0 = er/St. For simplicity we immediately make the
Boussinesq approximation r = 1, and the equations can
then be written as

e
@f
@t

þ er: fVð Þ þ r: f u� eVð Þ½ � ¼ m; ð47Þ

r: f u� eVð Þ½ � þ Str:V ¼ 0; ð48Þ

f u� eVð Þ ¼ f2 k þ d2crN
	 


; ð49Þ

r: f u� eVð Þ½ � ¼ fN ; ð50Þ

mþ @Ts
@t

þ V:rTs þ
1

St
f u� eVð Þ:rTs ¼ 0; ð51Þ

Ts ¼ �z: ð52Þ

[31] Taking W0 = 10�9 m s�1 	 3 cm a�1 as a typical
upwelling rate, and the other parameters in Table 1, gives

m0 	 3� 10�11 kg m�3 s�1; f0 	 0:005; N0 	 6:6� 106 Pa;

w0 	 10�7 m s�1 	 3 m a�1; t0 	 5� 1013 s 	 1:7 Ma; ð53Þ

and

e 	 0:01; dc 	 0:16: ð54Þ

e is the ratio of solid velocity to melt velocity, so is always
expected to be small. dc also being reasonably small is
indicative of the fact that the pressure in the channel is
reduced from that in the surrounding melt.
[32] The meaning of these equations is reasonably easy to

see; the thermodynamic constraint (equation (52)) means
that the energy equation (51) gives the melting rate m
because of the upwelling rates of matrix and melt. This
feeds into the mass conservation equation (47) to determine
how the melt fraction evolves, with the divergence of
melt being determined from Darcy’s law (equation (49)).
Equation (48) simply states that as the melt diverges the
matrix must compact to replace it, and that compaction is
governed through equation (50) by the effective pressure
(hence also commonly called the compaction pressure).
The fact that the effective pressure can then drive the melt
flow in equation (49) allows for the possibility of melt flow
focussing as we shall now see. It is immediately clear that the
length scale over which this pressure has an effect is the
compaction length

dcl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0f2

0hs
hlf0

s
	 8 km; ð55Þ

using the values in Table 1.
[33] Suitable boundary conditions are discussed by

Hewitt and Fowler [2008]; we take a constant vertical
upwelling rate W0 to be prescribed at the bottom of the
partial melt z = 0, where the melt fraction f is zero. The
effective pressure is prescribed to be zero at the top of
the partially molten region, z = 1, where the melt reaches
the lithosphere. The porous equations are simplified by
writing the dimensionless matrix velocity as

V ¼ k þ 1

St
rU; ð56Þ

and combining the equations to get

e
@f
@t

þ e
@f
@z

þ e
St
r  frUð Þ þ r: f2 k þ d2crN

	 
� 
¼ 1þ 1

St

@U
@z

þ 1

St
f2 1þ d2c

@N

@z

� �
; ð57Þ

r: f2 k þ d2crN
	 
� 

¼ fN ¼ �r2U: ð58Þ

The boundary conditions are then

@U
@z

¼ 0; f ¼ 0 at z ¼ 0;

U ¼ 0; N ¼ 0 at z ¼ 1:

ð59Þ

One-dimensional steady state solutions are shown in
Figure 3. The melt rate is constant in this case, m = 1,
and since e is small in equation (47) it is largely balanced by
melt divergence, which is buoyantly driven in equation (49).
Thus apart from small boundary layers at the top and
bottom, the melt fraction and melt velocity increase through
the region as z1/2.
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[34] We saw in section 2 that for a conduit of any
appreciable size, the pressure in the channel is close to
magmastatic. This means that the effective pressure in the
matrix there, scaled as above with N0, is N = Nc/dc

2 with
Nc 	 1 � z from section 2. This large effective pressure
causes the melt flow in the surrounding porous region to be
diverted toward the channel, and to calculate this flow we
apply this channel effective pressure as a boundary condi-
tion; if a channel occupies the full depth of the partial melt,
with dimensionless radius rc, the boundary condition is

N ¼ 1� z

d2c
at r ¼ rc; ð60Þ

where r is the radial coordinate, scaled with l and centered
on the channel. A channel radius will be thin compared to
the scale of the partial melt, so rc is very small; as viewed by
the partial melt, the channel is essentially a vertical line
sink.
[35] We expect the channel to draw in melt from a

surrounding region of radius comparable to the compaction
length. The suitable scales for this influx and the total
channel flux are therefore

W0 ¼ d2c lf0w0 	 7� 10�7 m2 s�1; Q0 ¼ W0l 	 0:035 m3 s�1;

ð61Þ

using the previously given estimates. With these scales, the
radial influx to the channel will be

W ¼ �2prcf2@N

@r

����
rc

: ð62Þ

We know from earlier that the flow up the channel causes
melting, which is balanced by the closure of the walls
assuming the channel is in steady state. Using the scaling
for Q0 in equation (61), along with the results of section 2,
this means that the boundary condition on the matrix
velocity is

2prcV  n ¼ � d2c
St2

M 	 � d2c
St2

Q

r
; ð63Þ

where M and Q are the scaled melt rate and volume flux in
the channel, and n is the outward normal to the channel
walls.
[36] Figure 4 shows a steady state numerical solution of

equations (56)–(59) with equations (62) and (63) in which
we take the channel radius rc as fixed. The actual radius will
need to depend on depth according to the channel dynamics,
but for the purposes of seeing how the pressure sink affects
the partial melt this is sufficient. The large effective pressure
close to the channel causes enhanced matrix compaction
there and results in a decrease in the melt fraction toward
the channel; this decrease does not stop the melt from
getting through however, as the pressure gradients driving
it in are sufficiently high. The calculated influx W and
resulting flux Q from such a solution are shown in Figure 3.
[37] Some straightforward analytical understanding of the

flow into the channel can be seen if St is large, corresponding
to the matrix undergoing only a small degree of melting. It
is found numerically that the behaviour when St is smaller is
not significantly different. Ignoring terms of order e and 1/St
in equations (56) and (58), the equations and boundary
conditions are

1 ¼ r: f2 k þ d2crN
	 
� 

¼ fN ; ð64Þ

Figure 3. (a–c) One-dimensional solutions to equations (56)–(59) for an ascending column of
partial melt. The parameters are e = 0.01, dc = 0.14, St = 20. Dashed lines show the approximate
solutions f = z1/2, N = z�1/2, w = z1/2. The axes show the scaled variables, with typical scales given in
equation (53). (d–e) Influx and total flux for a channel of radius rc = 5� 10�4 as calculated by equation (62)
from the numerical solution to equations (56)–(59) with equations (60) and (63) at the channel boundary.
Parameters are e = 0.01, dc = 0.14, St = 20. Dashed lines show the approximate analytical solutions (73)
and (74). The axes show the scaled variables with typical scales given in equation (61).
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N ¼ 1� z

d2c
at r ¼ rc;

N ! 1

z1=2
; f ! z1=2 as r ! 1; ð65Þ

which state that the melt divergence balances melting and is
related to the effective pressure through the compaction law.
The behaviour at infinity tends toward the one-dimensional
solution. Thus N = 1/f, and f satisfies a nonlinear reaction
diffusion equation. Rescaling r = dcR, and then taking only
the leading order terms in dc, we have

2f
@f
@z

¼ 1þ @2f
@R2

þ 1

R

@f
@R

; ð66Þ

f ¼ 0; at R ¼ Rc; f ! z1=2 as R ! 1: ð67Þ

Approximate solutions to equations (66) are sought by
writing f = z1/2 + y, and approximating

2f
@f
@z

	 2z1=2
@f
@z

¼ @f
@x

; ð68Þ

with the change of variable x = z1/2. This is somewhat
analogous to Oseen’s approximation for flow past a sphere
[Batchelor, 1967]. Then

@y
@x

¼ @2y
@R2

þ 1

R

@y
@R

; ð69Þ

y ¼ 0 at x ¼ 0;

y ¼ �x at R ¼ Rc; y ! 0 as R ! 1: ð70Þ

Taking a Laplace transform gives the solution as

y ¼ � 1

2pi

Z gþi1

g�i1

epx

p2
K0

ffiffiffi
p

p
R

	 

K0

ffiffiffi
p

p
Rc

	 
 dp; ð71Þ

in terms of the modified Bessel function K0. This can be
used to calculate the flux into the channel from

W ¼ �2prcf2@N

@r

����
rc

¼ 2pRc

@y
@R

����
Rc

¼ Rc

i

Z gþi1

g�i1

epx

p3=2

K1
ffiffiffi
p

p
Rc

	 

K0

ffiffiffi
p

p
Rc

	 
 dp: ð72Þ

If Rc is small, as we expect, asymptotic approximations to
the Bessel functions can be used, and we find that the flux
into the channel, scaled with W0 in equation (61), is
approximately

W ¼ 2p
z1=2

� ln Rc

2
� g

; ð73Þ

where g = 0.5772. . . is the Euler-Mascheroni constant. This
gives an integrated flux into the channel, scaled with Q0 in
equation (61),

Q ¼ 4p
3

z3=2

� ln
Rc

2
� g

: ð74Þ

Figure 4. (a–b) Steady state solutions, for melt fraction f and effective pressure N, to equations (56)–
(59) with equations (60) and (63) at a channel boundary r = rc = 5 � 10�4. White arrows show the
direction of melt flow. The parameters are e = 0.01, dc = 0.14, St = 2. The variables are scaled with the
typical values given in equation (53), and any values above the maximum on the color scale are colored
the same. The melt fraction around the channel is very small (<0.5%). (c) Traveltime for melt to be
extracted from the porous flow for the same situation. White arrows show the direction of melt flow. The
time is scaled with the typical advective time in the partial melt et0 = l/w0.
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Figure 3 shows these approximations in comparison with
the numerical calculations. The effect of having St smaller is
to cause a reduction in the melting rate close to the channel
(because the melt is moving sideways and therefore not
carrying so much heat down the solidus gradient), and
thus a slight reduction in the influx from that given by
equation (73). Nevertheless, equation (74) is quite a reason-
able approximation for the total melt entering the channel.
[38] We see that a channel acts as a pressure sink to the

porous flow, and can effectively suck out melt from a
surrounding region on the order of the compaction length.
This establishes the physical basis for the source term W to
the channel in section 2; with the typical values used here,
the flux in the channel (see Figure 3) is indeed of the order
0.01 m3 s�1, as used there.

4. Channel Evolution

4.1. Radial Flow Into a Channel

[39] The models (13)–(18) for a melt channel and the
models (47)–(52) for the partial melt are very similar and
include the same physical mechanisms. The main difference
between the two is that, whereas in the partial melt the
melting rate is dominated by the upwelling of the matrix, in
the channel it is dominated by the upwelling of the melt.
[40] In fact in the partial melt heat is carried upward by

both the matrix and the melt; the flux carried by the melt is
the 1/St term in equation (51). The Stefan number is thus the
ratio of mass flux carried by matrix to melt; the smaller it is,
the more the rock is ascending as melt rather than solid.
Note that St is also a measure of the degree of melting, since
1/St is the fraction of rock which has melted by the time it
reaches z = 1 in one-dimensional upwelling [see Hewitt and
Fowler, 2008].
[41] The presence of the 1/St term in equation (51) allows

for the possibility of a melting instability very similar to the

reaction-infiltration instability [Aharonov et al., 1995;
Kelemen et al., 1995; Spiegelman et al., 2001]. That is;
areas of larger melt fraction have a larger melt flux, which
transports more heat upward and results in enhanced melting
in those areas. This can have a runaway effect which causes
the melt fraction to increase more and more, and eventually
turn into an open channel. The dynamics of a high-porosity
region within the partial melt, when the dominant advection
term in equation (51) transfers from the matrix to the melt,
vary smoothly toward those of the channel in section 2.
[42] Figure 5 shows the evolution of a small Gaussian

perturbation to the one-dimensional steady state in the
partial melt, from a numerical solution of equations (56)–
(59). When the melt fraction reaches 100%, a channel is
formed and the boundary conditions in equations (60) and
(63) are used there. The initial perturbation increases the
melt fraction by 50% of its undisturbed value to a maximum
value of around 1%, and this perturbation is initially
smoothed out by compaction over the majority of the
region. However the low melt pressure in the higher
porosity region near the top of the partial melt gradually
pulls in more melt from the surroundings and as this melt
becomes more and more localized it eventually channelizes.
The channel then grows downward into the partial melt by
drawing in melt from the sides and below, and eventually
reaches the bottom, as was assumed in section 3.
[43] Since the average porosity in the partial melt is

typically very small, the amount of melt available means
the fully open channel must be extremely narrow compared
to the scale of the partially molten zone, and also compared
to the compaction length. Thus the resolution required to
capture the growth of these channels in numerical simula-
tions is quite high; the central cells in the discretization of
Figure 5 have dimensionless radius 5 � 10�5, and the
channel is assumed to be contained within this.

Figure 5. Evolution of melt fraction around a channel from a radially symmetric numerical calculation
of equations (56)–(59), when the initial condition is the one-dimensional steady state with a Gaussian
shaped perturbation added. The maximum initial porosity (scaled with f0) is around 2. Parameter values
are e = 0.01, dc = 0.14, St = 2. All variables are scaled, with the typical scales in equation (53), and any
scaled melt fraction larger than 2 is shown in red. When the melt fraction reaches 100% (corresponding to
the scaled f reaching 200), these cells are interpreted as channels as in section 2 and the pressure is
prescribed to be magmastatic there. The boundary conditions (60) and (63) are then used.
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4.2. Two-Dimensional Flow Into a Channel

[44] The above section has all looked at radial flow into a
cylindrical channel. We can analogously look at two-
dimensional flow into a crack shaped channel, which
extends a long way in the third dimension. If the breadth
of the channel is b, one could expect the evolution equation
equivalent to equation (4) for the crack width h to have the
form [e.g., see Sleep, 1988]

@h

@t
¼ M

brs
� b

hs
Nc: ð75Þ

Such planar crack shapes might be expected if fracturing
occurs in the mantle beneath mid-ocean ridges. Considera-
tion of how the melting rate varies along the breadth of the
crack suggests however that such a shape will be subject to
instability, similar to the elastic fractures in the work of
Bruce and Huppert [1989, 1990], and will naturally evolve
toward a cylindrical shape instead.
[45] We would nevertheless like to show how the spacing

of channels might evolve in a two-dimensional simulation
(a larger three-dimensional simulation being beyond the
scope of this paper), so we interpret the two-dimensional
channels as behaving similar to those in section 2. There are
some differences, particularly in the flow law which
depends on h3 rather than S2, but essentially the dynamics
are the same with S replaced by h. From the point of view of
the partial melt, all that matters is that the channels act as
line sinks of large effective pressure, since the melt pressure
in the channel is again close to magmastatic; the precise
shape of the channel does not alter this conclusion.

[46] Figure 6 shows a two-dimensional simulation of
equations (56)–(59) (the background matrix motion is
vertical so this might correspond to the plane along a
midocean ridge axis rather than perpendicular to it), in
which the one-dimensional steady state is perturbed by
adding thin columns of larger porosity. The perturbations
are randomly sized, but with a maximum disturbed porosity
of around 1%. This initial condition is chosen because
channels will only be resolved within very thin cells, so
the perturbations are designed as seeds for potential chan-
nels within the thinnest cells in the discretization. Some of
the perturbations disappear while others grow to form
channels; as the incipient channels grow they try to draw
in melt from their surroundings and consequently the larger
ones grow at the expense of the smaller ones. A typical
spacing of channels develops, of the order of the compac-
tion length �dcl, and the vast majority of the melt is
focussed sideways into one of the channels.

5. Discussion

5.1. Melting Instability

[47] The dynamics of the channels presented here are
somewhat different to the high-porosity channels which
arise from mechanical instabilities [Stevenson, 1989;
Spiegelman, 2003], decompaction beneath the lithosphere
[Sparks and Parmentier, 1991] or reactive infiltration insta-
bilities [Kelemen et al., 1995; Aharonov et al., 1995;
Spiegelman et al., 2001]; the destabilizing effect is very
similar to that which causes reactive infiltration on a
solubility gradient, but the local melting rate here continues
to increase until an open channel forms. This is because
increased melt flow enhances melting, and unlike in a

Figure 6. Evolution of f and N in a two-dimensional numerical simulation of equations (56)–(59), with
an initial condition consisting of the one-dimensional steady state perturbed by adding random amounts
to the porosity in thin columns of cells with dimensionless width 10�4. The maximum perturbed porosity
(scaled with f0) is around 2. Boundary conditions in x are periodic, and the parameter values are e = 0.01,
dc = 0.14, St = 2. All variables are scaled, with the typical scales in equation (53), and any scaled melt
fraction larger than 2 is shown in red. If the melt fraction reaches 100% (corresponding to the scaled f
reaching 200), the equations no longer hold; such cells are interpreted as channels as in section 2 and the
pressure is prescribed to bemagmastatic there. Additional boundary conditions equivalent to equations (60)
and (63) are therefore imposed. A characteristic spacing of channels similar to the compaction length
develops, and the melt fraction between channels is very small (<0.5%). The channel growth downward is
slowing toward the end, but this is a consequence of the resolution not being high enough to pick up the
continued extension; the initial growth is nevertheless well resolved.
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dissolution reaction, there is no limit to the amount of solid
which can be ‘‘eroded’’.
[48] The instability seen in section 4 appears to be

nonlinear, requiring a finite perturbation in melt fraction to
initiate a channel; for larger Stefan numbers (corresponding
to a lesser degree of melting) a larger perturbation is needed
to initiate a channel. Substantial variations inmelt fraction are
presumably ubiquitous in the mantle (because of heteroge-
neities in composition for example), and if not, then the other
instability mechanisms mentioned above may provide them.

5.2. Channel Flux and Spacing

[49] However they form in the first place, channels in a
matrix undergoing decompression melting can be governed
by the balance between viscous closure and melting. This
allows for a steady state, and there seems to be no reason to
suppose that these channels should not be long-lived features.
The pressure in them is nearly magmastatic and therefore
reduced from that in the surrounding pores, so they can
continually suck in melt as fast as it is produced. The
accumulation region is on the order of the compaction length,
though as Figure 4 shows it is probably slightly smaller than
this. Thus regardless of channel dynamics, the amount of
melt which enters the channel can be expected to be compa-
rable to that which is produced within a compaction length;
this is exactly what the scaling in equation (61) says.
[50] The compaction length in the mantle is notoriously

unknown, because of uncertainties and variability in prop-
erties such as the grain size and particularly the viscosities,
which are also dependent on temperature, pressure, compo-
sition and volatile content. The values used above (Table 1)
are rough estimates but in reality the viscosities of both
magma and matrix may vary by at least an order of
magnitude. Typical estimates for the compaction length
range between 10 m and 10 km, with the most likely
probably somewhere in the middle of this range. The flux
in the channel is proportional to the square of the com-
paction length, so it similarly has a large range of uncer-
tainty. In terms of the dimensional parameters it is, from
equation (61),

Q0 ¼
r

St
d2c l

2W0 ¼ hs
k0Drg
hl

� �1=2 rs
rl

cGrsg
L

� �3=2

l5=2W
3=2
0 :

ð76Þ

5.3. Melt Velocities

[51] Some interesting features of the channels in section 2
to note are that the cross-sectional area, while very small in
comparison to the scale of the melting region, is somewhat
larger than one might imagine for the size of melt flux, with
a diameter on the order of 30 m for a flux of order 0.01 m3

s�1. The melt velocity is seen from the definition of S0 in
equation (12), to be independent of the melt flux; the typical
velocity is

wc0 ¼
Q0

S0
¼ rs

rl

L

cGrsg
Drgl
hs

	 300 m a�1; ð77Þ

using the values in Table 1. The flow is therefore much
faster than the porous flow (w0 	 3 m a�1), but not

enormous. In fact the channel really seems to act rather like
a reservoir of melt, which is only slowly driven upward at
the rate more melt is sucked in. (77) may be even faster than
some geophysical constraints suggest [Kelemen et al.,
1997], but it is interesting to note from section 2 that the
scaled velocity is roughly Q/S = rNc in the steady channel,
and is therefore decreasing toward the top; thus (77) is
probably an over estimate for the typical velocity.

5.4. Residence Times for Melt

[52] Examination of the timescales in sections 2 and 3
suggests travel times for melt to ascend the depth of the
partial melt in a conduit may be only several hundred years,
compared to 30 thousand years or more to rise the same
distance by porous flow in the partial melt (these are
estimates using the values in Table 1, so must be taken
with due caution). Figure 4 shows the time taken for melt to
be extracted from the partial melt, either into the channel or
to the top of the region. It is seen that melt within the
accumulation zone around the channel is relatively quickly
drawn in, being in the partial melt for around 3 ka. Melt
slightly further away appears to be retarded by the influence
of the channel without being drawn into it, and takes longer
to reach the surface than that furthest away which is
unaffected by the presence of the channel.

5.5. Chemical Tracers

[53] Chemical feedbacks on the dynamics of the partial
melt have been ignored in this study, but we can neverthe-
less consider the effect of this type of melt extraction on the
concentration of tracer elements within the rocks. We
consider simply idealized tracer elements which have a
constant bulk partition coefficient k, meaning that in equi-
librium the concentrations in solid and melt must be in ratio
cs/cl = k. The porous flow is assumed to be entirely in
chemical equilibrium, whilst an open channel will be
assumed to be chemically isolated from the surrounding
solid. The conservation equation

@

@t
clfþ cs 1� fð Þð Þ þ r  clfuþ cs 1� fð ÞVð Þ ¼ 0; ð78Þ

is solved for the concentrations in the case shown in Figure 4,
and the results are summarized in Figure 7. The concentra-
tion in the channel is assumed to be well mixed; if on the
other hand the chemical signal is preserved from when the
melt entered the channel it might be expected that the more
enriched melt from deeper in the mantle ascends in the
center, with the melts from shallower nearer the edges
[Spiegelman and Kelemen, 2003]; this would lead to more
variability than is shown in Figure 7. It is however seen that
the channel melt is enriched in incompatible elements with
small bulk partition coefficients, whilst the melt in the
surrounding residual matrix is relatively depleted.

5.6. Channel Alignment

[54] The channels studied here are all aligned vertically
since the buoyancy force causes the melt to rise vertically. If
variations in the matrix pressure caused by the viscous
stresses in equation (43) were included, they would introduce
an extra pressure gradient in Darcy’s law (equation (49)),
which effectively realigns the buoyancy force driving melt
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flow. In a matrix undergoing corner flow at a spreading
ridge, these additional pressure gradients will be directed
toward the ridge [Spiegelman and McKenzie, 1987], so
channels which form might be expected to align themselves
in the same direction. They could then provide an efficient
mechanism to focus flow toward the ridge axis from a wider
melting area.

5.7. Channel Interaction

[55] Intersection of two channels as investigated by Ito
and Martel [2002] is a possibility, although they found that
their dikes only interact over distances smaller than the
compaction length, whereas the channels studied here have
been seen to be spaced at this distance. As seen in Figure 6,
closer channels do not want to coexist because the larger
ones grow at the expense of the smaller ones by drawing in
the surrounding melt.

6. Conclusion

[56] We have presented a mathematical model for melt
flow in parts of the upper mantle and considered the
possibility for open conduits of melt. This has been done
in the context of a single component rock which melts
because of decompression as it ascends. Unlike the usual
models of these regions which concentrate on multiple
components and dissolution reactions, we have included
an energy equation which, because thermodynamic equilib-
rium is maintained, determines the rate of melting. This
melting rate is not necessarily constant but is principally
determined by the rate at which heat is carried upward by
both matrix and melt; there may be some important con-

sequences of this which are overlooked if a constant
‘‘background’’ adiabatic melting is assumed.
[57] The models presented here suggest that open melt

channels might exist and be governed by (1) their growth
caused by drawing in melt from a surrounding region of the
order of the compaction length, and by melting the solid
walls because of decompression melting; (2) their plastic
closure, caused by pressure within the channel being almost
magmastatic and therefore reduced from the lithostatic
pressure in the surrounding matrix.
[58] Heat transfer occurs sufficiently fast that the melt in a

channel would be roughly the same temperature as the
surrounding matrix. A channel would be able to drain a
surrounding region of the order of the compaction length,
collecting a melt flux Q � 0.01 m3 s�1 � 3 � 105 m3 a�1

for the values in Table 1, with ascent velocity on the order
of 100 m a�1. The surrounding residual matrix is reduced to
very low melt fractions (<0.5%), and the melt from these
regions is extracted into a channel in a few thousand years.
[59] Channels might naturally evolve from an instability

very similar to the reactive infiltration instability associated
with the heat transport by the melt, and will have a spacing
comparable to the compaction length. They could act as a
very efficient method for extracting melt and offer a physi-
cally grounded mechanism for near-fractional extraction.
[60] We do not claim that these types of channel neces-

sarily exist in the mantle; but rather point out that the
mechanisms to produce and maintain them are there. The
models presented here are of course far too simplistic to
capture everything that is going on beneath midocean
ridges, and it is possible that other processes are dominant.
However, it is interesting to observe that channels can form
naturally during decompression melting even for a single
component rock. Future work should look at modeling the
melting of rocks with a more realistic composition, and
determining the melting rate self-consistently.

Notation

b Breadth of crack-shaped channel (m)
c Specific heat capacity (J kg�1 K�1)
cs Tracer concentration in solid (mol m�3)
cl Tracer concentration in melt (mol m�3)
g Gravitational acceleration (m s�2)
h Width of crack-shaped channel (m)
k Unit vector in vertical direction (dimensionless)
k Thermal conductivity (J m�1 s�1 K�1)
k0 Permeability constant (dimensionless)
l Depth scale of partial melt (m)
L Latent heat (J kg�1)
m Melt rate in partial melt (kg m�3 s�1)
m0 Melt rate in partial melt scale (kg m�3 s�1)
M Melt rate in channel (kg m�2 s�1)
M0 Melt rate in channel scale (kg m�2 s�1)
N Effective pressure in partial melt (Pa)
N0 Effective pressure in partial melt scale (Pa)
Nc Channel effective pressure (Pa)
Nc0 Channel effective pressure scale (Pa)
pc Melt pressure in channel (Pa)
pl Melt pressure in partial melt (Pa)
ps Matrix pressure (Pa)
p0 Reference pressure (Pa)

Figure 7. Concentration of an incompatible trace element
in erupted melt compared to the concentration of the parent
rock for different bulk partition coefficients k = cs/cl. These
are calculated using equation (78) from the radially
symmetric steady state solutions to equations (56)–(59)
with equations (60) and (63) at a channel boundary r = rc =
5 � 10�4, as shown in Figure 4. The solid line shows the
concentration in the melt at the top of the channel (which is
assumed to be well mixed but not in chemical equilibrium
with the surrounding rock), the dashed line shows the
concentration in the melt in the residual matrix close to
the top of the channel, and the dotted line shows the
concentration in the melt at the top of a one-dimensional
ascending porous column.
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Q Channel flux (m3 s�1)
Q0 Channel flux scale (m3 s�1)
r Density ratio (dimensionless)
S Channel cross-sectional area (m2)
S0 Channel cross-sectional area scale (m2)
St Latent heat/sensible heat (dimensionless)
Ts Solidus temperature (K)
Ts0 Solidus temperature variation scale (K)
T0 Reference temperature (K)
u Melt velocity in partial melt (m s�1)
U Matrix velocity potential (m2 s�1)
V Matrix velocity (m s�1)
W0 Upwelling velocity (m s�1)
w0 Melt velocity scale (m s�1)
a Heat transfer constant (dimensionless)
G Clapeyron slope (K Pa�1)
dc
2 Partial melt effective pressure/channel effective pres-

sure (dimensionless)
e Matrix velocity/melt velocity (dimensionless)
hl Melt viscosity (Pa s)
hs Solid viscosity (Pa s)
k Bulk partition coefficient (dimensionless)
q Excess temperature in channel (K)
q0 Excess temperature in channel scale (K)
L Viscous resistance/buoyancy in channel

(dimensionless)
m Excess temperature/solidus temperature range

(dimensionless)
n Viscous heating/advective heating in channel

(dimensionless)
rl Melt density (kg m�3)
rs Solid density (kg m�3)

Dr Density difference (kg m�3)
ts Matrix deviatoric stress (Pa)
f Volume fraction of melt (dimensionless)
f0 Volume fraction scale (dimensionless)
y Porosity perturbation (dimensionless)
W Melt source to channel (m2 s�1)
W0 Melt source to channel scale (m2 s�1)
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